VÍDEO DE TABLA DE FRECUENCIA
ESTADISTICA
domingo, 8 de diciembre de 2013
Muestreo aleatorio por conglomerados
Los métodos presentados hasta ahora están pensados para seleccionar directamente los
elementos de la población, es decir, que las unidades muéstrales son los elementos de la
población.
En el muestreo por conglomerados la unidad muestral es un grupo de elementos de la
población que forman una unidad, a la que llamamos conglomerado. Las unidades hospitalarias, los departamentos universitarios, una caja de determinado producto, etc., son conglomerados
naturales. En otras ocasiones se pueden utilizar conglomerados no naturales como, por ejemplo,
las urnas electorales. Cuando los conglomerados son áreas geográficas suele hablarse de
"muestreo por áreas".
El muestreo por conglomerados consiste en seleccionar aleatoriamente un cierto numero
de conglomerados (el necesario para alcanzar el tamaño muestral establecido) y en investigar
después todos los elementos pertenecientes a los conglomerados elegidos.
Los métodos presentados hasta ahora están pensados para seleccionar directamente los
elementos de la población, es decir, que las unidades muéstrales son los elementos de la
población.
En el muestreo por conglomerados la unidad muestral es un grupo de elementos de la
población que forman una unidad, a la que llamamos conglomerado. Las unidades hospitalarias, los departamentos universitarios, una caja de determinado producto, etc., son conglomerados
naturales. En otras ocasiones se pueden utilizar conglomerados no naturales como, por ejemplo,
las urnas electorales. Cuando los conglomerados son áreas geográficas suele hablarse de
"muestreo por áreas".
El muestreo por conglomerados consiste en seleccionar aleatoriamente un cierto numero
de conglomerados (el necesario para alcanzar el tamaño muestral establecido) y en investigar
después todos los elementos pertenecientes a los conglomerados elegidos.
Muestreo aleatorio estratificado
Trata de obviar las dificultades que presentan los anteriores ya que simplifican los procesos
y suelen reducir el error muestral para un tamaño dado de la muestra. Consiste en considerar
categorías típicas diferentes entre sí (estratos) que poseen gran homogeneidad respecto a alguna
característica (se puede estratificar, por ejemplo, según la profesión, el municipio de residencia, el
sexo, el estado civil, etc.). Lo que se pretende con este tipo de muestreo es asegurarse de que
todos los estratos de interés estarán representados adecuadamente en la muestra. Cada estrato
funciona independientemente, pudiendo aplicarse dentro de ellos el muestreo aleatorio simple o el
estratificado para elegir los elementos concretos que formarán parte de la muestra. En ocasiones
las dificultades que plantean son demasiado grandes, pues exige un conocimiento detallado de la
población. (Tamaño geográfico, sexos, edades,...).
Trata de obviar las dificultades que presentan los anteriores ya que simplifican los procesos
y suelen reducir el error muestral para un tamaño dado de la muestra. Consiste en considerar
categorías típicas diferentes entre sí (estratos) que poseen gran homogeneidad respecto a alguna
característica (se puede estratificar, por ejemplo, según la profesión, el municipio de residencia, el
sexo, el estado civil, etc.). Lo que se pretende con este tipo de muestreo es asegurarse de que
todos los estratos de interés estarán representados adecuadamente en la muestra. Cada estrato
funciona independientemente, pudiendo aplicarse dentro de ellos el muestreo aleatorio simple o el
estratificado para elegir los elementos concretos que formarán parte de la muestra. En ocasiones
las dificultades que plantean son demasiado grandes, pues exige un conocimiento detallado de la
población. (Tamaño geográfico, sexos, edades,...).
sábado, 7 de diciembre de 2013
Muestreo aleatorio sistemático
Este procedimiento exige, como el anterior, numerar todos los elementos de la población,
pero en lugar de extraer n números aleatorios sólo se extrae uno. Se parte de ese número aleatorio
i, que es un número elegido al azar, y los elementos que integran la muestra son los que ocupa los
lugares i, i+k, i+2k, i+3k,...,i+(n-1)k, es decir se toman los individuos de k en k, siendo k el resultado
de dividir el tamaño de la población entre el tamaño de la muestra: k= N/n. El número i que
empleamos como punto de partida será un número al azar entre 1 y k.
El riesgo este tipo de muestreo está en los casos en que se dan periodicidades en la
población ya que al elegir a los miembros de la muestra con una periodicidad constante (k)
podemos introducir una homogeneidad que no se da en la población. Imaginemos que estamos
seleccionando una muestra sobre listas de 10 individuos en los que los 5 primeros son varones y
los 5 últimos mujeres, si empleamos un muestreo aleatorio sistemático con k=10 siempre
seleccionaríamos o sólo hombres o sólo mujeres, no podría haber una representación de los dos
Este procedimiento exige, como el anterior, numerar todos los elementos de la población,
pero en lugar de extraer n números aleatorios sólo se extrae uno. Se parte de ese número aleatorio
i, que es un número elegido al azar, y los elementos que integran la muestra son los que ocupa los
lugares i, i+k, i+2k, i+3k,...,i+(n-1)k, es decir se toman los individuos de k en k, siendo k el resultado
de dividir el tamaño de la población entre el tamaño de la muestra: k= N/n. El número i que
empleamos como punto de partida será un número al azar entre 1 y k.
El riesgo este tipo de muestreo está en los casos en que se dan periodicidades en la
población ya que al elegir a los miembros de la muestra con una periodicidad constante (k)
podemos introducir una homogeneidad que no se da en la población. Imaginemos que estamos
seleccionando una muestra sobre listas de 10 individuos en los que los 5 primeros son varones y
los 5 últimos mujeres, si empleamos un muestreo aleatorio sistemático con k=10 siempre
seleccionaríamos o sólo hombres o sólo mujeres, no podría haber una representación de los dos
Muestreo Aleatorio Simple
Es el procedimiento probabilístico de selección de muestras más sencillo y conocido, no obstante, en la práctica es difícil de realizar debido a que requiere de un marco muestral y en muchos casos no es posible obtenerlo. Puede ser útil cuando las poblaciones son pequeñas y por lo tanto, se cuenta con listados. Cuando las poblaciones son grandes, se prefiere el muestreo en etapas. Se utiliza ampliamente en los estudios experimentales, además, de ser un procedimiento básico como componente de métodos más complejos (muestreo estratificado y en etapas).
Se caracteriza por que otorga la misma probabilidad de ser elegidos a todos los elementos de la población. Para él calculo muestral, se requiere de: El tamaño poblacional, si ésta es finita, del error admisible y de la estimación de la varianza.
Suscribirse a:
Entradas (Atom)